
CSCI 210: Computer Architecture

Lecture 23: MIPS addressing

Stephen Checkoway

Slides from Cynthia Taylor

Today’s Class

• Addition & Multiplication in Floating Point

• Addressing in MIPs

CS History: The Deep Space Kraken

• Bug in the space simulation game Kerbal
Space Program prior to 2012

• The game moved ships through space
• When ships moved at very high

velocities, floating point errors would
cause parts of the ship to be misaligned

• The game would interpret this as those
parts breaking off the ship or colliding
with each other

• Fixed it by moving space around the
ship, instead of the ship through space

Floating point addition algorithm

Input: two single-precision, floating point numbers x, and y

Output: x + y

1. If either x or y is 0, return the other one

2. Denormalize x or y to give them both the larger exponent

3. Add the significands, taking sign into account

4. If the result is 0, return 0

5. Normalize the result

In Javascript, you perform the operation
9007199254740992 + 1. What is the result?

A. -9007199254740992

B. 9007199254740992

C. 9007199254740993

D. This will cause an error

E. None of the above

Reminder: 9007199254740992 is 253

How many times will this loop run in python?
a = 1000

while a != 0:

 a -= 0.001

A. 1000 times

B. 100000 times

C. 1000000 times

D. It will run forever

E. None of the above

This will run forever
a = 1000

while a != 0:

 a -= 0.001

• a is never 0, instead it goes from 1.673494676862619e-08 to -
0.0009999832650532314.

• Takeaway: Float equality is hard! Usually want to check within
a small range

FP Adder Hardware

• Much more complex than integer adder

• Doing it in the general purpose ALU/CPU would take too long

– Much longer than integer operations

– Slower clock would penalize all instructions

• FP adder usually takes several cycles

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Questions on Floating Point Addition?

Multiplication in base-10 scientific notation

• Multiply 2.34 * 103 and 4.56 * 105

• Check sign

• Add together exponents

• Multiply fractions (with appropriate signs)

• Normalize

1.0002 × 2–1 × –1.1102 × 2–2

A. –1.1102 × 2–1

B. –1.1102 × 2–2

C. –1.1102 × 2–3

D. –1.1102 × 21

What issues could we run into doing this in binary
floating point?

A. Adding bias in exponent twice

B. Added exponent could be greater than 127 or less than -126

C. Multiplied fraction could be longer than 23 bit

D. More than one of the above

Floating point multiplication algorithm

Input: two single-precision, floating point numbers x, and y

Output: x * y

1. If either x or y is 0, return 0

2. Compute the sign of the result

3. Add the exponents, unbiasing first

4. Multiply the significands as 64-bit integers and shift right by
23 bits

5. Normalize the result

FP Instructions in MIPS

• FP hardware is coprocessor 1
– Adjunct processor that extends the ISA

• Separate FP registers
– 32 single-precision: $f0, $f1, … $f31
– Paired for double-precision: $f0/$f1, $f2/$f3, …

• FP instructions operate only on FP registers
– Programs generally don’t do integer ops on FP data, or vice versa

• FP load and store instructions
– lwc1, ldc1, swc1, sdc1

• e.g., ldc1 $f8, 32($sp)

– Psuedoinstructions are easier to read: l.s, l.d, s.s, s.d

FP Instructions in MIPS

• Single-precision arithmetic
– add.s, sub.s, mul.s, div.s

• e.g., add.s $f0, $f1, $f6

• Double-precision arithmetic (operates on paired registers)
– add.d, sub.d, mul.d, div.d

• e.g., mul.d $f4, $f4, $f6

Questions about Floating Point?

• Floating point is a finite approximation of the infinite number
space

• This approximation leads to problems

Basic Question of Addressing

• How do we specify which data to operate on (or instruction to
jump to)?

• Complication:
– Instructions are 32 bits.

– Memory addresses are 32 bits.

– Data is in 32 bit words.

• Can never full specify address/data in a single instruction

Register Addressing

• Which register the data is in is specified in the instruction

• 32 registers = 5 bits per register address

• Used in add, jr, etc

Immediate Addressing

• Data is a constant within instruction

• There is no memory address/register number, because we are
just writing the information in the instruction itself

• 16 bits, can specify numbers up to 216-1 = 64 k

• Used in addi, ori, etc

Base + Offset Addressing

• Problem: 16 bits is not enough to address every word in
memory

• Solution: Add the 16-bit offset to the 32-bit address within a
register (the base)

• Used in lw, sw

Branch and Jump: Recall

• Recall the basic instruction cycle

– IR = Memory[PC]

– PC = PC + 4

• Both branch and jump instructions change the value of the
program counter

PC-relative Addressing

• Problem: Cannot hold a 32-bit memory address in a single 32-
bit instruction (that also holds an opcode and two register
numbers)

• Solution: Add an offset to the current value of the program
counter

In a program, the target of a branch (if/for) is

A. always within 215 instructions of the branch

B. usually within 215 instructions of the branch

C. usually more than 215 instructions away from the branch

PC-relative Addressing

• Take 16 bit constant, shift left 2, add to value in PC

• Can access PC +/- 217 bytes = PC +/- 215 instructions

• Used in beq, bne

<< 2

Why do we shift left by two?

A. We use the last two bits of the PC instead

B. We only branch to instructions that are multiples of 4 words away
from the current instruction

C. Instructions are words and addresses specify bytes, so the last two
bits of the address will always be 00

D. None of the above

<< 2

Which PC value in PC-relative addressing?

0x42000 slt $t0, $t1, $t2
0x42004 beq $t0, $zero, target
0x42008 addi $s0, $s0, 1
…
0x????? target: ori $s0, $s0, 1

If the beq instruction has an immediate field of 0x0572, what is the address
of the target ori instruction?

PC is the address of the following instruction
target address: 0x42004 + 4 + (0x0572 << 2)

Consider the sequence of instructions:
0x480C bne
0x4810 add
0x4814 sub
0x4818 lw
If the immediate field of the bne instruction is 1,
which instruction is the target of the branch?

A. bne

B. add

C. sub

D. lw

E. It’s an error because
addresses must be multiples
of 4

We can create an infinite loop using a beq
instruction with rs = rt = $zero and an
immediate field of

A. -4

B. -1

C. 0

D. 4

E. Infinite loops are undefined behavior and so aren’t allowed

Branching Far Away

If branch target is too far to encode with 16-bit offset, assembler
rewrites the code

 beq $t0, $t1, far_away

becomes
 bne $t0, $t1, not_equal

 j far_away

not_equal:

Questions on PC relative addressing?

Pseudo-direct Addressing

• Problem: Cannot hold 32 bits of a memory address in the 32-6
bits of an instruction holding an opcode

• Solution: Use the most significant bits of the PC for the missing
bits

Pseudo-direct Addressing

• We have 26 bits of address in the instruction

• Shift left by two

• Concatenate first four bits of PC + 4 with address

• Used in j, jal

Consider a jal instruction at address 0xC8001074 whose 26-bit
address field has the value 0x0000003. What is the address of
the instruction the jal will jump to?

A. 0x00000003

B. 0xC0000003

C. 0xC0000007

D. 0xC000000C

E. 0xC800000C

Psuedo direct addressing
• Shift left by two
• Concatenate first four bits of PC + 4 with address

Questions about addressing?

Reading

• Next lecture: Datapath

	Slide 1: CSCI 210: Computer Architecture Lecture 23: MIPS addressing
	Slide 3: Today’s Class
	Slide 4: CS History: The Deep Space Kraken
	Slide 5: Floating point addition algorithm
	Slide 6: In Javascript, you perform the operation 9007199254740992 + 1. What is the result?
	Slide 8: How many times will this loop run in python?
	Slide 9: This will run forever
	Slide 10: FP Adder Hardware
	Slide 11: FP Adder Hardware
	Slide 12: Questions on Floating Point Addition?
	Slide 13: Multiplication in base-10 scientific notation
	Slide 14: 1.0002 × 2–1 × –1.1102 × 2–2
	Slide 15: What issues could we run into doing this in binary floating point?
	Slide 16: Floating point multiplication algorithm
	Slide 17: FP Instructions in MIPS
	Slide 18: FP Instructions in MIPS
	Slide 19: Questions about Floating Point?
	Slide 20: Basic Question of Addressing
	Slide 21: Register Addressing
	Slide 22: Immediate Addressing
	Slide 23: Base + Offset Addressing
	Slide 24: Branch and Jump: Recall
	Slide 25: PC-relative Addressing
	Slide 26: In a program, the target of a branch (if/for) is
	Slide 27: PC-relative Addressing
	Slide 28: Why do we shift left by two?
	Slide 29: Which PC value in PC-relative addressing?
	Slide 30: Consider the sequence of instructions: 0x480C bne 0x4810 add 0x4814 sub 0x4818 lw If the immediate field of the bne instruction is 1, which instruction is the target of the branch?
	Slide 31: We can create an infinite loop using a beq instruction with rs = rt = $zero and an immediate field of
	Slide 32: Branching Far Away
	Slide 33: Questions on PC relative addressing?
	Slide 34: Pseudo-direct Addressing
	Slide 35: Pseudo-direct Addressing
	Slide 36
	Slide 37: Questions about addressing?
	Slide 38: Reading

